97超碰人人草,欧美在线激情,日日日韩,chinese国产人妖ts,日韩爱爱免费视频,一级免费黄,日韩美精品

世界上最聰明的一塊玻璃,它可以用來識別數字

來源:智匯工業(yè)

點擊:1688

A+ A-

所屬頻道:新聞中心

關鍵詞:人工智能 神經網絡

    7月15日,集中了解到,來自威斯康星大學麥迪遜分校電子及計算機工程系副教授喻宗夫(ZongFu YU)團隊,研究以封面形式發(fā)表在 7 月 8 日的光學期刊 Photonics Research 上。


      這大概是世界上最聰明的一塊玻璃,它可以用來識別數字,并且無需耗電,也不用傳感器,只要光亮即可。


      這個玻璃 AI 研究將人工智能嵌入了一個非計算機的物理裝置中,自帶科幻色彩。它能夠實時區(qū)分手寫數字,也就是說,一塊小小的玻璃實現了傳統(tǒng) AI 的相機、傳感器和深度神經網絡的功能整合。當數字變換時,系統(tǒng)能及時作出反饋。


      核心算法:光的散射


      光學神經計算最重要的特點是,幾乎不消耗能量,且因其有內在的并行性可大大加快計算速度。與此前光學神經計算不同,喻宗夫團隊的研究沒有遵循數字神經網絡架構,也不采用分層前饋網絡,而是利用光學反射連接各個激活單元。正是這種光反射作為反饋機制,從而導致了豐富的波動結果。


      這是一種無需分層的連續(xù)人工神經計算系統(tǒng)。這套系統(tǒng)利用了特意嵌入玻璃中的石墨烯和小氣泡。當目標圖像的光線穿過玻璃 AI 時,其路徑就會被這些氣泡和石墨烯反射或折射而造成彎曲,彎曲后的光線會聚焦到玻璃另一側 10 個點中的某個點上。


      這 10 個點對應了從 0 到 9 這 10 個數字。就像一把鑰匙開一把鎖,如果某個數字的光線沒有對焦到相應的數字,研究者就調整系統(tǒng)中的雜質大小和位置。研究者對此進行了成千上萬次訓練,最終玻璃 AI 學會了精確的數字對應。即使手寫數字風格不同,這套系統(tǒng)也能準確聚焦、識別。


      這是一種以簡單結構獲得復雜行為表現的研究。在機器學習的過程中,研究人員訓練的是物理材料,而不是數字代碼。也就是說,光傳播的波動力學實現了人工神經計算的功能。相對于數字計算,這是顛覆性的觀念。


      研究人員認為,這套系統(tǒng)在現實中的應用還不確定,但理論上可以制作成生物識別鎖,進行人臉識別。只是這個系統(tǒng)還缺乏計算上的靈活性,以及面對多線程或不同的任務。


      顯然,這個玻璃 AI 看起來和我們此前認識的 AI 系統(tǒng)不一樣,它為何會被稱為 AI 系統(tǒng)?這個系統(tǒng)有人臉識別的潛力嗎?研究者下一步會如何開發(fā)這個系統(tǒng)?帶著諸多問題,DeepTech 專訪了作者喻宗夫。


      模糊識別很難,是 AI 的體現


      DeepTech:能不能介紹你們課題組的工作內容以及你們的研究目標?利用光來做 AI 系統(tǒng),這個思路是怎么產生的?


      喻宗夫:我們希望在納米光學技術和機器學習的交叉口創(chuàng)新,希望對光敏材料、傳感器件、光學成像系統(tǒng)和機器學習全棧優(yōu)化。以前硬件和軟件的研究比較分立,我們希望把軟硬件看作一個整體,以具體應用為目標導向,從新整體考慮視覺感知。在這個大方向下面,我們組成員們展開思路,不拘泥于現有光感、成像、識別的架構體系,于是 Erfan 和其他組員就想出了這個點子。


      DeepTech:與其他的光計算相比,你們這個研究是怎樣的特點?


      喻宗夫:以前的光計算本質上還是數字計算,只是把電子換成了光子,從電路改成了光路。用光作為載體來計算有幾十年歷史了,這次我們利用的是結構材料本身特性。


      首先第一點,我們的玻璃 AI 不存在以前神經網絡的分層概念,它整個就是一體化的。另外,我們整個優(yōu)化方法的過程也不是按照模擬數字神經網絡的思路,而是優(yōu)化麥克斯韋方程,去控制光的物理散射過程。


      從實現的結果上來說更不一樣。就是說我這個裝置可以做得非常小,也不需要用任何能量,因為以前的結構需要分層,體積和能耗就比較大。


      DeepTech:這個玻璃 AI 看起來和我們此前認識的 AI 系統(tǒng)不一樣,它為何會被稱為 AI 系統(tǒng)?能不能說,這只是一套數字密碼系統(tǒng)?


      喻宗夫:模式識別是典型的 AI 應用。這和密碼系統(tǒng)完全相反,我們需要這個玻璃有很大的容錯性:一個數字誰來寫,都要認出來,這種模糊識別很難,是 AI 的體現。 相反,密碼則要一個比特也不能差,卻容易實現多了。


      DeepTech:這個 AI 系統(tǒng)與計算機是什么關系呢?該系統(tǒng)的訓練學習過程是一個調整玻璃內石墨烯雜質的過程,而不是其他 AI 系統(tǒng)那樣在計算機輸入數據、在終端輸出結果那樣的過程,對嗎?


      喻宗夫:光在玻璃里面?zhèn)鞑ゾ褪且粋€偏微分方程控制的波動過程,而神經網絡和偏微分方程有很大的相似性。我們利用這種相似性,以波動方程為載體實現神經網絡的計算效果。


      光打到玻璃里的小孔上,就會被散射開。小孔就像數字神經網絡里的節(jié)點,它們把輸入混合起來,產生輸出。我們這個訓練過程,就要去做和神經網絡一樣的梯度下降,去調整玻璃里面的小孔和非線性材料的位置與大小。


      DeepTech:這個思路很出奇,做出這樣的系統(tǒng)需要哪些研究基礎呢?


      喻宗夫:其實做這個事情需要很多領域的配合。我們不是僅僅把數字改換成光子,我們還要去解電磁場方程。所以對機器學習、電磁場方程這兩塊領域都要熟悉。 我們希望在這個交叉領域繼續(xù)研究創(chuàng)新。


      DeepTech:似乎這個 AI 系統(tǒng)不需要那么巨量規(guī)模的訓練,是這樣理解嗎?


      喻宗夫:不是,我們也需要很多訓練。因為這個是在電磁場介質里面?zhèn)鞑?,我們要仿真整個電磁場傳播的過程,然后在這個基礎上要對偏微分方程整體做優(yōu)化,所以計算量其實是非常大的。我們用的是機器學習的方法,但解的是電磁場的優(yōu)化問題,所以這兩塊結合起來很有挑戰(zhàn),需要從頭寫整個訓練工具。


      一個新的概念


      DeepTech:這個研究是一個怎么定位?是技術的突破,還是說創(chuàng)造了一個新的工具?


      喻宗夫:我覺得這是一種新的概念。我們是用玻璃本身來實現人工智能的計算,而以前的人工智能都是用計算機完成的,那么現在是利用非數字模擬的物理作用就可以實現這件事情,所以說在這方面是一個突破。如此引申的話,很多其他物理作業(yè)比如聲波也可以這樣操作。


      DeepTech:能說這是一個計算機嗎?


      喻宗夫:對。通用的計算機可以做很多事情,我們這個系統(tǒng)只能做一件事情,所以在這一點上它跟計算機是有差別的。但是目前來說,計算機的發(fā)展也漸漸地趨向于只做一件事情。比如說挖比特幣的礦機。


      我覺得,這個不是為了取代已有的圖像識別系統(tǒng),更多的可能是一些更廣闊、以前沒有應用的方式。比如說,雖然說我們現在有了數字鎖,但是沒電或者斷網就不能用。我們這個人臉識別鎖就像傳統(tǒng)物理鎖,只要有鑰匙它就一直可以用。


      所以可能是在這種更加特殊的時候,如果你擔心 AI 系統(tǒng)被攻擊的話,那么這個系統(tǒng)完全沒有可能從外界去攻擊或干擾,它對安全性很有保障。


      DeepTech:除了數字識別,這個系統(tǒng)如果用來開發(fā)人臉識別的話,還需要做哪些工作?以及其挑戰(zhàn)有多大?


      喻宗夫:人臉識別在概念上的可行性已經可以通過現在的工作證明。人臉識別的應用需要不少工程工作,可能超出一個學術問題了。比如訓練的樣本的光場建模需要大量的計算。


      DeepTech:你們下一步會如何開發(fā)這個系統(tǒng)?這個系統(tǒng)將來如何能便捷應用到普通民眾中,能成為一款便攜式的智能產品嗎?


      喻宗夫:這個概念為我們自己打開了一個思路:不一定要有數字和芯片才能智能。智能可以無所不在,我們稱之為物理驅動智能。 我們今天證明玻璃可以識別圖像,就是麥克斯韋電磁場定律賦予的。還有很多物品可以利用物理定律的來智能化。


      數字芯片是人類的智能產品,物理定律的智能產品一定更廣闊。我們覺得利用物理來做智能計算很有意思,而且有廣泛的應用價值。

    文章轉載鏈接:華強智慧網 http://news.hqps.com/article/201907/309039.html


    (審核編輯: 劉傳龍)

    聲明:除特別說明之外,新聞內容及圖片均來自網絡及各大主流媒體。版權歸原作者所有。如認為內容侵權,請聯系我們刪除。